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ABSTRACT

The theoryof the thin shell hollow sphere piezoceramic
underwater sound radiator is investigated in detail. Stait-
ing with the equations of state an equation of motion is
derived for the case of pure radial motion. Formulas are
deduced for coefficient of electromechanical coupling, veloc-
ity, power conversion, mechanical Q, transmitting pres-
sure, impedance, receiving response, and efficiency. Design
charts based on the properties of two popular ceramics
(a BaTiO3 - CaTiO; mix and a PbTiO; - PbZrO; mix) are
also presented. The limits of validity of the derived equa-
tion are also discussed,
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THECRY OF A VERY THIN PIEZOCERAMIC HOLLOW SPHERE
UNDERWATER SQOUND RADIATOR

INTRODUCTION

The vibrations of an isotropic elastic sphere, or shell bounded by two spherical sur-
faces, have been worked out in detail by various writers. Poisson (1) in his memoir of
1829 discussed the radial vibration of a solid sphere. Jaerisch (2), Chree (3), and Lamb
{4) investigated problems in the free and forced vibrations of solid and hollow spherical
shells. Bromwich (5), Jeans (6), and Love (7) extended these investigations to include
geophysical phenomena. Laura (8) worked out expressions for the effect of a liquid
medium on a vibrating sphere. In more recent times the problem of the acoustic vibra-
tions of a polarized electrostrictive hollow sphere in a liquid medium under electrical
excitation has been studied by Rosenthal and Baerwald (8).

The following analysis recapitulates the work of Rosenthal and Baerwald and proceeds
in greater detail to derive results not found in their report. The usefulness of many of
the derived equations is improved by presentation of design graphs in Appendix A.

THE STRUCTURE

The structure (Fig. 1) consists of a hollow sphere of polarized electrostrictive
ceramic made of two hemisnheres cemented at the equator. Each surface of the sphere
is completely electroded with fired silver paste. Polarization of the ceramic is in the
direction along a radial line. The structure is driven into forced vibration by the appli-
cation of an alternating electric {ield (E,) applied across the thickness of the sphere.
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Figure 1 - Piezoceramic hollow sphere
underwater sound radiator
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The vibrating sphere radiates sound into an infinite medium of density o, and sound
velocity (compressional waves) c_.

EQUATIONS OF STATE

The analysis will be condurted in the orthogenal spherical system of coordinates, ¢
{colatitude angle), ¢ {azimuth angle), and r (radius). For simplification in writing, when
these appear as subscripts they will be designated by the numerals 1, 2, 3 respectively. It
is assumed from the onset that the thickness-to-exterior radius ratio t/R, is considerably
less than unity, and that the variation of mechanical fields (stress) and electrical fields
(electric field gradient) with the radial coordinate is negligible, The stress field and
electric field are thus two dimensional, the planar character of which will be emphasized
by placing a bar over all symbols representing the material constants (stiffness constant
%, plezo modulus 7,,, etc.).*

The appropriate set of equations of state shculd begin with the phyeical fact that
electromechanical conversion of energy is obtained by exciting a polarized electrostric-
tive material. However, it is more convenient to treat the active ceramic as an artificial
piezoelectric crystal and assign to it certain "effective moduli” whose form and magni-
tude are determinable by conventional piezoelectric techniques. In accordance with this
procedure we describe the planar electromechanical state of the polarized ceramic by a
set of linear plezoelectric equations in the form suggested by Mason (10). These equa-
tions state that the planar stresses (T,, T,) depend upon the state of strain (S,, S,) and
upon the electric field (E;) in an infinitesimal volume of material anywhere inside the
ceramic in the following way:

_ =E -B -
Ty =€;18 +¢25; -¢€3 E;
(1a)
_E _E -
Ty =€ 8y +Cy Sy ~ %, Ey

The dependence of the clectric displacement vector D, on the electric field and the state
of strain is

s -
Dy = €33 E3 + 83,(S; + S3) (ib)

where e;', is the dielectric constant at zero strain. A positive strain is defined as one
that accompanies a state of mechanical tension in a body free to move. A positive elec-
tric field vector is one that points in the same direction 28 the polarizing electric field
vector,

The mechanical equations (1a) and the electrical equation (1b) are independent state-
ments of laws of nature having in each case the same two independent variables E and S.
I one of these variables (say S) is eliminated by substitution, a single equation of state
is obtained which describes conditions at any material point of the ceramic due to both
clectrical and mechanical fields. Equation (1b) becomes

_ 1
2e ey,(T, + Ty)
s 31
R 1 | AT YT (22)
(@) * €13)eqy €11 * 202

In a similar way the variable £, may be eliminated between the equations, and Egs.
(1a) become

*A list of symbols appears at the end of the report.

PO i i L S,
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-2 B -
Ze 2¢,4 D
E ~E 31 31 Y3
Ty +Ta= (g *+C5) (1 + =5 =55 (S5;+8y) - s (2b)
(F *Een €33

It is noted ln each of Egs. (2a) and (2b) that the magnitude of the material constants
€ ,53, e, and c , 18 modified by the same group of assembled symbols. This group is
deﬁnec'.i in the literature (11) as the material static mixed planar coefficient of electro-
mechanical coupling, (k 2)..;. that is,

31
k)i, * GE T EEVeS” (3a)

A related parameter of electromechanical coupling that will prove of use in later discus-
sions is (kpz)h", where

k2
( .) - (k )Ill . (ab)
P'hom 1 + (kp?)“

For convenience in writing we can reduce the number of terms appearing in Eq. (2b)
by recalling that 2F/gF - v (Poisson's ratio) and vy defining a new constant €D such that

=D E 2
YRR L N

The tangential strain S, (S; = S,) for a purely radial symmetrical mode of inotion, is
simply the radial displacement ¢ divided by the external radius R,. Equation (2b) may
therefore be written

- 2844 D
- o=D _ 23 Dy
T1*72‘2°u“*”)'ﬁ€; es
a3

()

In this equation the coupling of the electrical field to the mechanical is implicifly
contained in the open circuit stiffness constant ¢",. While it {s always possible to use
Eqs. (1a) in the form shown as an aid in determimng the radial displacement ¢, the
displacement so determined would be a first approximation only, since Eq. (1b) would
still remain to be satisfied. The method of initial substitution used here i{s convenient,
though superficial, and has the disadvantage of changing the field variable E, to the elec-
tric displacement variable Dy. However, the dynamic equation of motion is directly
deducible from Eq. (4) without the preliminary inversion of factors that accompanies the
use of equations involving the piezo modulus dy;. From this point of view the method
leading to Eq. (4) is preferable to other possible methods, though the end results of all
correct methods will differ one from the other in no material way.

EQUATION OF MOTION AND SOLUTIONS

The stress equation of dynamic equilibrium for the case of pure radial motion in
spherical coordinates is (12)

Myy 1 My T 2
1 1 33 - d
ar 't 36 'reinb6 3p +~} (3Tgy = Tyy = Tag * Ty cot € + o F, = 9¢‘d"t'§' ®)

All the terms appearing in this relation are forces acting upon 2 unit of (interior) volume
of material with density o_. In particular, the quantity F, is the body force per unit of

. e
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mass arising from some external agency. This differs in its nature from the elastic
forces accompanying deformation, which are described by the stress derivatives above.

Under the assumptions of thin shell planar analysis (restricted to pure radial motion)
the forces stemming from the stresses T3, Ty, and T,, and their derivatives are to be
neglected. In addition the external agency of (acoustic) fluid pressure p on the shell of
thickness t is considered to induce a body force per unit of volume equal in magnitude to
p/t. The direction of this "body force" must be carefully chosen to agree with the physi-
cal situation of a pulsating shell. When the planar stresses T, and T,, are positive
(tension), the radial displacement ¢ is positive, since the shell is expanding. Under the
action of elastic restoring forces the acceleration d2:/dt? must however be negative,
that 1s, toward the origin of coordinates. Simultaneously the external acoustic pressure
is negative (compression), and induces a negative acceleration. The equation of motion
therefore for a very thin spherical shell of external radius R, reduces to

“(Tyy + Typ)
R

(-]

2.
€ dt

La.

P
te P (9)

~

The time variation of ¢ has not been specified, and while pulsed excitation of the
sphere would prove of interest, it is the harmonic response that is of principal utility.
In addition, since we have made acoustic pressure, p, positive when it applies to deficit
pressure (tension), contrary to the conventional formulas of acoustic theory which make
excess pressure positive, we modify the latter accordingly and write the known specific
acoust(ic ;mpedance of a pulsating sphere with an additional negative sign; that is, we
write (13

-p.c ke (ke + 3)
- < w ‘Tz v, (7)
1+ kér

p

where k is the wave number, and v is the raedium veiocity here identified with jo<¢,
Substituting Eqs. (4) and (7) into (6) and collecting terms, we obtain

p_c.kRo (kRo + ) §° . 25.“ DS

cwd i + ED 1+ .
w¥oPe * t[1 + k2 Rozl' jwget 28, ( v) R°2 ‘353Ro ®)

Equation (8) is a differential relation expressing the forced excitation of the sphere by an
electromechanical force per unit volume F, equal to the quantity 2&,, Dy/¢ SR . The
radial mechanical displacement is therefore

. &y R Dy
£ | R
D(1+uv)eS <1 .‘i’_i'.ﬁ _i".)’ ‘w ®)
‘b“( v)cn (w“) . ¢ “h, | (uﬂ°>,
of —2
c'

where

[ ]
28,:(1+)
wng.. 11 .

10
RZ 5 (10)

The quantity «, defined by Eq. (10) has a special significance. In the absence of an
acoustic load (i.e., when o, = 0) «, is that frequency which produces an infinite displace-
ment, internal dissipation neglected. It is therefore the ideal mechanical resonant {re-
quency of a radially pulsating thin shell sphere under open sircuit conditions.
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A noteworthy feature of Eq. (9) is that the displacement is a complex number, result-
ing from the existence of velocity-dependent and acceleration-dependent loads. The
absolute magnitude of this complex displacement is found to be

)
lg] = gy

3R,y

ot R AT 2

[N

Pu R, -
oy + 1) 1] . (11)

Further deductions from Eq. (8) may be obtained by writing it in a more revealing
way. Again restricting the time dependence to steady state. and using the sinusoidal
forcing excitation F,, we find that

~m a?E + 1 jwget k6= F (12a)
where
. . Pu Ry
LR [1 +p—c m] (12b)
pue. k2 R:
'] = ww 2
r -—————-—-t“ ; k’R:) (1 C)
220 (140
k* = —.!L_L . (lzd)

R,?
Equation (12a) is recognized as the stecdy state differential equation of forced motion
of a velocity-damped mass-spring system, with frequency-dependent constants. The
solution is easily seen to be

FQ cos {wt - @)

{= 13
/et s (Am - k*)2 (130)
e tw
ten ¢ A (13b)

The mechanical resonant frequency in the liquid medium «, is defined as that fre-
quency ut which the phase angle ¢ between F,and ¢ s »/2 That is,

1k
“ g
L)
or
2 220 (1+0)

“i =

] 4 . Pu Rq ' (14)

The difference between the mechanical resonant frequency in air, Eq. (10), and the
mechanical resonant {requency in a liquid, Eq. (14), thus depunds upon the parameter in

TN et RS i aE ST




6 NAVAL RESEARCH " ABORATORY

brackets. This latter quantity, which may be thought of as a factor by which the density
of the ceramic is to be increased, is itself frequency dependent, and hence not deter-
minate, unless the magnitude of «y is already known. Equation (14) is therefore best
solved by trial and error. However, in any given situation it will be convenient to assume
wg ® « in order to compute this density modifying factor. Repeated trials will quickly
vield the true value of wp.

Further deductions from Eq. (13a) may be made by proceeding conventionally to
define the quality factor Q3 and the resonance factor n in such a way that we may write

F, cos (wt - &)

o), _ 22,0 (15a)
k V(l n?) +Q‘——2

n "= wwy (15b)
ar = wpm®/r* (15¢)

The mechanical Q, is defined as the quality factor O,', computed at velocity resonance,
i.e., at the frequency for which the phase angle. is -/2. f we designate the wave parameter
k(=w/c,) corresponding to the frequency of velocity resonance as kg, we derive an expres-
sion for Q, when . = .

k 1+ 2 B ]
#¥o Pe t(1 + kgnj)J

Q\ o, Ro knz R°2 (163)
P t(1+kJRD)
In general, k,,’ Ro’ >> 1 for the case of a hollow thin shell at velccity resonance. The
mechanical q_ thus reduces to
(kl R’) Pt 1
4 + .
QTR TR, (16b)
Expressions for surface velocity and surface acceleration are
. -F, sin (wt -9)
£= -F 5
] ) ' (173)
Vr 20 (om® -
£= -wF_ cos (wt - @)
IR (u.- - !'.'.) (17b)

By suitable maximizing procedures the frequencies of maximum displacement ()
and maximum acceleration (o ) are derived to be

wy Twy H1 - 'Q (18a)
U. ® U. —-—!—i— .
e (18b)

Q
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Because of the simplicity of the equation of motion, Eq. (12), the derived expressions,
Eqgs. (15), (17), and (18), were quickly obtained, since they are standard results. An addi-

tional standard result, namely, the temporal damping factor 2, may be obtained with
similar ease, since

g
and thus
2
a, = 1. PuCw kR R°2
" .
2 e nae P (19)

The reduction of the problem of the radially pulsating sphere to that of a system with
a single degree of freedom is a convenient, though not wholly satisfactory, approxima-
tion. Since the stiffness per unit volume is k°, the total stiffness is evidently 4nR? tk*,
a quantity proportional to the thickness t. Having idealized the elastic system to the
extent of allowing t2/R? to be very small, it is seen ihat in the limit the hollow sphere
will have no stiffness at all (t = 0). It will resemble a membrane, which, for any given
surlface force, ylelds extremely large displacements., The acoustic performance of such
an ldealized structure will be extraordinary. Due caution is therefore to be observed in
the intended uses of the following performance formulas.

ELECTRICAL IMPEDANCE

The solution of the equation of motion has led to an expression {for mechanical dis-

placement ¢ in terms of electric displacement D, (Eq. 8). Substituting this into Eq. (1b)
and solving for F, we obtain

Dy (k)

“, Pet \“h (a-no)’
L t
c'
~
For the case of a very thin shell, the current 1y is jwé~R? Dy, and the dependent
voltage v, is approximately Eyt. Hence we may rewrite Eq. (20) as a typical impedance

B,o= 241 - = ” . et
s L (&) T (."’. ) | (20)

relation:
( (ke 3)
b LN ».kl
Yo ? g 2 (l F e ) {21}
1 - _\ . *v‘o @\ v/ ’
(“'*} Pely (uﬂ) R, :
() 1)
where

C. . ‘?«'l: "S’,‘J‘.

A aumerical computation using Eq. (21) will prove instructive. We assume a hollow
shell (in water) of lead titanate-lead zirconate ceramic for which (k1 by SO, R
-l

G daieve e Amitrade )

b e

i o

e - e e

L s
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at air resonance is 4.0, R/t = 10,and o, o, = 1/7.6. If the drive frequency is the same
as the mechanical resonant frequency in air {if w = «_) then

I3 . | .
v X 0.596 jwC + 0.381wC = jBy +G;.
3

As seen from the electrical terminals the sphere appears as a capacity in parallel
with a resistance. The electrical (=B, G;) is approximately 1.5. Due to the inertial
effect of the water the susceptance iB, is reduced tc 0.6 of its low frequency value, a
remarkable reduction, stemming from the high coupling factor.

ACOUSTIC POWER DELIVERED

From Egq. (12) it is apparent that the force per unit volume dissipated in the resist-
ance r* is ér°, Since every particle of the sphere moves with the same displacement,
the total force in the direction of the velocity ¢ is 4R ¥t <r¢*. Recalling that D; is an
independent variable {constant current source) we employ Eq. (17a) and write an expres-

sion for the maximum acoustic power delivered to the medium:

(Pa)pys = (47R2 I EE

or
167 tr'E:-‘ D32 sirx2(wt - &)

a = . 2_
S 2 2+ (wm‘ - 5—3
33 \ w |

Since the applied current I, is equal to 47 R? juD,, and the blocked capacity ctis
4nR? €5 /t, Eq. (22) can be rewritten in terms of Iy:

{22)

2
)2 531 r* sin2(wt -&)

[r" ) (wm. ] Li‘:):} : (23)

It is frequently desirable to have an expression for the acoustic power in terms of
the applied (or source) voltage v;. Regarding the source current I; as a constant source
in parallel with its admittance jwC®, both supplying the radiation resistance r* with
power, we see that the equivalent voltage source is V, in series with the impedance
1/jwC3, both supplying the same resistance r*. Hence [I,/wC*|is equal to V,, the peak
applied voltage.

J16m( 13
Ph‘ t\ s

wC

Employing Eq. (3b) we can write Zq. (23) in ierms of the cougiing factor (k"Z)hom:

2 ~F 2 S o2 .2,
) B (k, )Mm c“(l+v)[1 + (K, )“!] €51 Vy sin“(ut - @)

a o /wm‘ _k:)z . (24)
‘\ [3)

At the frequency of velocity resonance (¢ = 0) the rms acoustic power into the water
ig therefore

P

2 E 2 J 2p2yy 2
dm(k,) TR+ (kD Ten(l kg ROV,

P =~ . 25
L APNTY (25)

It is to be remembered that v, in Eqs. (24) and (25) is the peak voltage.
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Equation (25) shows that the acoustic power output at velocity rescnance is approxi-
mately indeperdent of the radius R,. Toc reveal this fact we note that

103 _ URO { {2cll(l + "’)—‘
k“Rg ‘(_c—;/ \<~§ |

Fe c _]

When » = o, we find that
k2 RE =28 (1o s el
which is a farior independent of R,. When . << . this conclusion fails.
While the toial resonant power per voltage squared is approximately independen: of
R,, the surface power density (watts/cm?) is not. Hence a large resonant sphere (a low-
frequency sphere) can radiate much more energy than a small resonant sphere, because
it can tolerate a larger voltage (that is, for equal maximum surface power density, its

voltage drive will be very much larger).

An illustrative compuiation using Eq. {25) will prove of interest We select a lead

titanate-lead urconate material for which (k 2) =0.23, & = 91.3 x 10% v = 0.3,
1+ (kD R1 4k 2) K €S = 7.%0 x 10- -97 and” 2. = 7.6 x 103, Atvelocxtyresonance
misx
2,7 2-901.3x10%1.3) _
MR T T s rssr k108 O

Hence

p _4m < 0.23 x 91.3 x 10%(1. 1)(123)789*10”9"14

. 1.55 x 105 x 13

= 2310 x 10°5 V2 (rms power: V = pesk volts).

For a sphere 5 in. in diameter and 1/4 in. thick driven with 850 peak volts, the rms
power would be 1670 watts at 100-percent electromechanical efficiency.

We may also deduce a formula for the voltage required to achieve a surface power
density » (watts/m?) based upon the restricted case of Eq. (25). At velocity resonance,
we find

. /35 K,
y =
T Pe (26)
0\ V[l +(k2)-=x] 7y € 3 (1 ”‘R2R2’

Example: To achieve a density of 3 watts/em? using the 5-in. sphere of the material
noted above we require

V. = /2 x 3 x 10° x 6.35 x 10-2
0.48 /(1.23)(7.6) 7.89 x 10°9 x 1.5 x 103(14)

= 825 peak volts.

ACOUSTIC PRESSURE IN THE FAR FIELD

The expression for acoustic power obtained in the previous section may be written
symbolically as the product of the particle pressure and the conjugate particle volume
velocity. If the particle velocity 1s u, the latter quantity is 47 r%u*, since all parts of the
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sphere vibrate in phase with each other. Now in the far field at distance % the particle
pressure and velocity are substantially in phase and are related to one another through
the characteristic impedance of the medium c,c,. The conjugate volume velocity is then
478%° /0, c,. The magnitude of acoustic power in the far field therefore beccmes

1 _41”?2 H 2
P, = 4220 it
w

Equating this magnitude of acoustic power with the magnitude in Eq. (24), and solving
for the peak acoustic pressure in the far field, we obtain

™
-

o] = sin) 3

. . o2 ’ (27)
Jr 2 "(wm -%)J

L

At velocity resonance, «m® = k* w, and, after substituting Eq. {12c}, the far field
magnitude of acoustic pressure reduces to )

[ . E r 2 Ts e
. %] (k) Vs l/,.c,c,: (1 w)l_x + (k)
!

L F A 2 S 2
. VIR ¥y JER el e Vel e kg R
ol = 7

28a
= (282)

s ]

5 =¥ r 2 1¢S¢ 2.2
VT (k) Iy SRR e (kD TS+ kg R (28b)

Il =
P R wC? kRRo

At velocity resonance, the magnitude of the far field pressure is approximately
independent of the radius of the sphere, provided the frequency in the liquid medium does
not differ appreciably from the frequency in air. This will be the case for radius-~to-
thickness ratios (R,/t) less than 20 A sample calculation using the constants of the 5-in.

lead titanate-lead zirconate sphere mentiuned above (in which R /t = 10) shows the value
of the quantity |p|/v, to be

lp| _ /2 x0.48/91.3 x 10° x 1.3 x 1.23 x 7,89 x 10-% x 14

V,y R/13
- 23.8_ newton _47.6dy rei. 1 ubar ai 1 meter
R meter-volt volt ’
Also, since
wC® = 27 x 14 x 103 x 57,916 x 10-12
= 465 x 10°5

we have

Ipl _ 5100 newton _ %2 db ref. 1 ubar at 1 meter

T "R meter ampere ampere )

These are the maximum values to be expected since the efficiency of electromechanical
conversion is assumed to be 100 percent.
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11
RECEIVING RESPONSE
As long as the square of the acoustic pressure in the far {ield i strictly propor-
tional to applied electrical power {linear operation) the accustic performance of the ‘
gphere will obey the reciprocity law of linear transducers. Defining the reciprocity ]
factor J for distance % and wavelength * as
A
28X D2k _
J= i, (J X for R =1 meter) ]
and recalling that the open circuit receiving response M is related to the short circuit ) "
transmitting response S through J, we can write
Vo.c. 2RA Ip
B TMEIS o T

Replacing k# by ¥t = k+ (1+ (kp2>m;,‘3 because of electromechanical coupling, we intro-
duce Eq. 27 into this equation and obtain the open circuit receiving response of the sphere:

o.c¢ 33’
ol T wce 2 ' (29) .
t[r"+(wm' -—k:T-) ] .v

Numerical Example: At 14 kc the factor J has a vaiue

- v E 2 S,

7- 2\ 4n 47
T PaCy @Ay T 9m x 14 x 103 x 103

=110,

From the results of the previous computations on a 5-in sphere

v

0.C.

2
=1 x 10°6 x 5110 = 7.3 x 10-4 Yoltmmeter® ., 4 jo-s volt
Ipl 7 newton ubar

= ~82.7 db ref. 1 volt/ubar.

TRANSMITTING EFFICIENCY

The dissipation factor r* is the useful radiation load delivered through the agency of
the applied electrical power. If we now assume an internal mechanical (parasitic)
resistance r, proportional to velocity, we can write the total mechanical dissipation
factor as r*(1 + X), where x = r,/r". The rms power P,,, absorbed by both radiation
and mechanical damping is found by replacing r* by r*(1 + x) in Eq. (24), and taking 1/2
the resultant magnitude since peak voltazes are employed. The rms power P, absorbed
by the dielectric resistance of internal di.mping & is given by

2
vi2 vyt .
P, -ﬁ-n- -Twc tan &. (30)

Adding the power absorbed mechanically to the power absorbed electrically we obtain the
total absorbed power P;. The efficlency 7 is therefore
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S
?T Pu*m * Pd

where P, is computed from Eq. (24) with r*? in the denominator replaced by r*%(1 + x)2.
Substituting all the derived formulas we obtain

1
wC? tan &

2 s E , 2 TS ,*
Sﬁ(kp )hom cl!‘(l ' L)[l ' (kp )mi:J €33r (31)

)2
t {[r'(l +x)12 f(wm‘ %)}

N

‘n:

1 +x +

Hence at velocity resonance

K o.e (k R)12:uC’ tan (1 + x)2 . ﬂ
Prx s 2 "’E‘" o 2 S 2 2 (32)
8r(ky %) T )1+ (kS ) el kg R

Numerical Example: Continuing the analysis of the 5~in. lead titanate-lead zirconate
sphere and allowing tan & = 0.03, we find that

1
n= .
1+x+0.3(1 +x)2

In the absence of any parasitic mechanical damping the efficiency is 77 percent.

CONCLUSION

We have presented a complete account of the acoustic performance of a radially pul-
sating piezoceramic sphere. The results are restricted to narrow grounds of validity
through the basic assumptions used in the analysis. In particular, the shell is presumed
to be "very thin," to move with infinitesimal displacements, to be under the action of
weak electric fields, and to have no parasitic losses, except when these are specifically
mentioned. The extent to which the performance of an ideal sphere described here dif-
fers from that of an actual sphere will depend principally upon the magnitude of electro-
mechanical coupling achieved in manufacture. Excessive values of tan (> 0.03) will '
also reduce output and must be considered in judging the usefulness of the derived
equations,
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Appendix A

DESIGN GRAPHS

A series of design graphs based upon thé formulas derived in the main body of the
report and on the material constants listed in Table Al is presented in the following
pages. Due to the limitations of planar analysis as applied to a sphere and the uncer-
tainty of the values of material constants in a given (physically real) sphere, it is best to
regard the numerical results found from these graphs as convenient guides only, not
assuming an accuracy better than +7 percent. A few comments on the construction of
thesz graphs will be appropriate here, In the course of these comments we will consider
a typical design problem illustrating their use.

TABLE Al
Material Constants of Polarized Ceramics
Ceramic B PZT-4 PZT-5
(BaTiO; - CaTiO,)| (PbTiO, - PbZr0,)| (PbTiO; - PbZr0,)

Ef’l (newton/meter?) 127.9 x 10° 91.3 x 10° 74.7 x 10°
El‘z2 (newton/meter?) 38.3 x 109 27.9 x 109 23.0 « 10°
SE (meter %/newton) 8.62 x 10°1? 12.05 x 1072 12.05 x 16°'2
), .. 0.33 0.48 0.54
dy, (coulomb/newton) -58 x 10712 -97 x 10712 -140 x 1012
&,, (planar) -9.45 -10.38 -12.01

(newton/meter-volt)
5353 {coulomb/meter-volt) 9.64 x 10-9 7.89 x 10°° 10.24 < 10°°
¢\, (coulomb/meter-volt) 10,7 x 10-° 9.7 » 10°° 13.22 ~ 10-°
. (kilogram/meter?) 5.4 x 10° 7.6 x 103 7.6 < 10°
& = (2Ef (1470 1% 8.28 x 10° 8.2 x 10° 5.73 x 10°
e <

(meter/second)
v 0.3 0.3 0.3

Figures Al - Resonant Frequency

The curves in Figs. Al are numerical values of Eq. (10), except that a,"l is used in
place of tﬂ. The resonant {requencies shown are correct as long as the shell is very
thin, that (s, as long as R/t is greater than 10. Le! us begin our typical design problem
by requiring a PZT-4 sphere (see Table Al) to vibrate resonantly in water at 1 kc. From
Fig. Al we find that R, is 35 inches in air. The final design radius will be smaller because

of water loading.

14
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Figure A2 - Mechanical Q

Figure A2 holds for both materials discussed in the report. It is based upon Eq. (16b),
for which the condition k?R 2 >> 1 holds. In our problem we specify a mechanical Q of 2,
From Fig. A2 we see that R/t must be about 15, and hence that the thickness ¢t must be
2-1/3 inches.

Figures A3 - Radial Displacement

Figures A3 are based upon Eq. (11). The veloclty of sound in water is taken at
= 1.55 x 103 meter/sec. For a value of R/t = 15, we judge the radial displacement
to be 2.75 x 10-° meter/volt at w = «,, and somewhat higher, say 2.90 x 10-° meter/sec
at true water resonance. The surface velocity per volt is therefore

w x displacement = 27 x 103 x 2,75 x 10-9 = 1.73 x 105 m/volt-sec.

Figure A4 - Surface Area

Figure A4 gives the surface area of spheres as a function of diameter. The surface
area of a 70-inch-diameter sphere is 99,000 cm?.

Figures A5 - Power Density

The curves in Flgs A5 are numerical plote of Eq. (26). If we allow a surface power
density of 1 watt/cm?, we will need approximately 6800 volts (peak) electrical drive,
Since the thickness is 2 1/3 inches, or 8.45 cm, the maximum electrical gradient will be
818 volts/cm. The material of the sphere is evidently far from its power absorption
potential, since a value of 2400 peak volts/cm could be used with impunity. The total
power for 100-percent efficiency and for the coupling cited will be about 100,000 watts.

Figures A8 - Power Curves

Figures A6 are based upon Eq. (24). We have plotted, however, the rms values (1/2
of the formula) instead of the peak values. In our design problem, let us require the
power (for 100-percent efficiency) at 1/2 the design frequency, that is, at » /uw_=0.5. We
find, from Fig. A6b, that the real power output s approximately 250/2285 or 0.09 of its
value at resonance. Hence, the power at 500 cps will be about 11 kw.

Figures A7 - Resonant Pressure Amplitude

Figures A7 are based on Eqs. (28a) and (28b). From them we find that for a drive of
6900 peak volta (76.8 db ref, 1 volt) the source level at 1 meter will be 125 db ref. 1 ubar
(Fig. ATA) and the transmitting response will be +80.2 db ref. 1 ubar per ampere (Fig.
ATb),

Figure A8 - Recelving Response

The curves in Fig. AB are based on Eq. {20), computed at velocity resonance. For a
thicknes~ of 2-1/3 inches the resonant receiving response will be -65.0 db ref. 1 volt/ubar.
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Figure A9 - Blocked Reactance at Resonance (Xg)

The curves in Fig. A9 are computed from the simplified assumption of Xy = 1/ag c'.

At velocity resonance wgC* is a function of t/R, only. For t/R, = 1/15 = 0,057, X, = 1200hms.

Figure A10 - Electrical Q; Curves

For a given material the coupling factor k_ is known, Using the simplified relation
that Q; Q, = (1 - (k) ,,1/(k?),,,, the curves for the two materials in question were com-
puted as shown in f‘ig. A10. In the illustrative example Q, = 2; hence Qg = 1.7. Now
assuming that Qg is roughly X5/R, we compute R ~ 70 chms. The electrical impedance of

the sphere is therefore approximately 70 - 120 at velocity resonance.
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Figure A3a - Radial displacement per volt versus
{requency ratio w/w and the radius-to-thickness
ratio of piezoelectric ceramic spheres
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Figure A3b - Radial displacement per volt vergus
frequency ratio w/wn and the radius-to-thickness
ratio of piezoelectric ceramic spheres
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I1A3T OF SYMSOLS

2y, T Planar stilfress coefficients (rewton/matar?)

'f c* Capacity at gero strain (farad)

- <, Cerupresaional velocity of sound in water {meter,/second)
dyg Piezo modulus

] By Electric displacement (coulomb/meter?)
D, Outside diameter of sphere {m<ter)

- D, E Superscripts indicating at constant electric digplacement and constant

field respectively

| E, Electric ficld (volt/meter)
g4 Planar piezo modulus (newten/meter-volt)
F, Bedy force per unit of mass
5, 22,03/ € 53R,
I, Applied current {ampere)
] Reciprocity factar {meter 5/newton-second)
k Wave number (meter-!)
k* Defined by Eq. {12d)
k, Wave number at velocity rescnance in air {meter-')
(kp)a“ Mixed coefficient of electromechanical coupling
(kp)mIl Homogeneous coefficient of electromschanical coupling
kg Wave number at velocity resonance in water (meter -?)
m* Defined by Eq. (12b)
p Altemating acoustic pressure (newton/meter?)
P, Acoustic power (watt)
Qr Quality Factor ( = mechanical Q, at velocity resonance)
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Radial coordinate
Defined by Eq. (12¢)
Internal mechanical regisiance

Distance in far field {meier)

Qutside radius of sphere {meter)

Superscript

Planar strains (meter/metzer)

Compliance {meter 2/newton)

Shell thickness (meter)

Planar stresses (newton/meter?)

Stresses (newton/meter?)

Radial velocity in steady stzie (meter/second)
Applied voltage {volt)

Cpen cirguit voltage (volt)

‘Temporal damping constant (Eq. 19)
Dielectric constant at zero strain (coulomb/meter-volt)
Dirlectric constant at zero stress (coulomb/meter-volt)
Spherical coordinate

Poisson's ratio

Radial displacement (meter)

Radial velocity {meter/second)

Density of ceramic (newton-second >/meter*)
Density of water {newton-second 2/meter*)
Spherical coordinate and phase angle

r /e

Frequency (radian/second)

Resonant frequency in air (radian/second)

Resonant frequency in water (radian/second)
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